Two-Dimensional Joint Bayesian Method for Face Verification

نویسندگان

  • Sunghyu Han
  • Il-Yong Lee
  • Jung-Ho Ahn
چکیده

The Joint Bayesian (JB) method has been used in most state-of-the-art methods for face verification. However, since the publication of the original JB method in 2012, no improved verification method has been proposed. A lot of studies on face verification have been focused on extracting good features to improve the performance in the challenging Labeled Faces in the Wild (LFW) database. In this paper, we propose an improved version of the JB method, called the two-dimensional Joint Bayesian (2D-JB) method. It is very simple but effective in both the training and test phases. We separated two symmetric terms from the three terms of the JB log likelihood ratio function. Using the two terms as a two-dimensional vector, we learned a decision line to classify same and not-same cases. Our experimental results show that the proposed 2D-JB method significantly outperforms the original JB method by more than 1% in the LFW database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Verification with Multi-Task and Multi-Scale Features Fusion

Face verification for unrestricted faces in the wild is a challenging task. This paper proposes a method based on two deep convolutional neural networks(CNN) for face verification. In this work, we explore to use identification signal to supervise one CNN and the combination of semi-verification and identification to train the other one. In order to estimate semi-verification loss at a low comp...

متن کامل

Face Verification with Multi-Task and Multi-Scale Feature Fusion

Face verification for unrestricted faces in the wild is a challenging task. This paper proposes a method based on two deep convolutional neural networks (CNN) for face verification. In this work, we explore using identification signals to supervise one CNN and the combination of semi-verification and identification to train the other one. In order to estimate semi-verification loss at a low com...

متن کامل

Person Identity Verification Based on Multimodal Face-Gait Fusion

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation o...

متن کامل

Determining Effective Features for Face Detection Using a Hybrid Feature Approach

Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JIPS

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016